This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | |- A e. RR |
|
| lt.2 | |- B e. RR |
||
| lt.3 | |- C e. RR |
||
| Assertion | le2tri3i | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) <-> ( A = B /\ B = C /\ C = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | |- A e. RR |
|
| 2 | lt.2 | |- B e. RR |
|
| 3 | lt.3 | |- C e. RR |
|
| 4 | 2 3 1 | letri | |- ( ( B <_ C /\ C <_ A ) -> B <_ A ) |
| 5 | 1 2 | letri3i | |- ( A = B <-> ( A <_ B /\ B <_ A ) ) |
| 6 | 5 | biimpri | |- ( ( A <_ B /\ B <_ A ) -> A = B ) |
| 7 | 4 6 | sylan2 | |- ( ( A <_ B /\ ( B <_ C /\ C <_ A ) ) -> A = B ) |
| 8 | 7 | 3impb | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) -> A = B ) |
| 9 | 3 1 2 | letri | |- ( ( C <_ A /\ A <_ B ) -> C <_ B ) |
| 10 | 2 3 | letri3i | |- ( B = C <-> ( B <_ C /\ C <_ B ) ) |
| 11 | 10 | biimpri | |- ( ( B <_ C /\ C <_ B ) -> B = C ) |
| 12 | 9 11 | sylan2 | |- ( ( B <_ C /\ ( C <_ A /\ A <_ B ) ) -> B = C ) |
| 13 | 12 | 3impb | |- ( ( B <_ C /\ C <_ A /\ A <_ B ) -> B = C ) |
| 14 | 13 | 3comr | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) -> B = C ) |
| 15 | 1 2 3 | letri | |- ( ( A <_ B /\ B <_ C ) -> A <_ C ) |
| 16 | 1 3 | letri3i | |- ( A = C <-> ( A <_ C /\ C <_ A ) ) |
| 17 | 16 | biimpri | |- ( ( A <_ C /\ C <_ A ) -> A = C ) |
| 18 | 17 | eqcomd | |- ( ( A <_ C /\ C <_ A ) -> C = A ) |
| 19 | 15 18 | stoic3 | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) -> C = A ) |
| 20 | 8 14 19 | 3jca | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) -> ( A = B /\ B = C /\ C = A ) ) |
| 21 | 1 | eqlei | |- ( A = B -> A <_ B ) |
| 22 | 2 | eqlei | |- ( B = C -> B <_ C ) |
| 23 | 3 | eqlei | |- ( C = A -> C <_ A ) |
| 24 | 21 22 23 | 3anim123i | |- ( ( A = B /\ B = C /\ C = A ) -> ( A <_ B /\ B <_ C /\ C <_ A ) ) |
| 25 | 20 24 | impbii | |- ( ( A <_ B /\ B <_ C /\ C <_ A ) <-> ( A = B /\ B = C /\ C = A ) ) |