This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | keephyp2v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| keephyp2v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| keephyp2v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) | ||
| keephyp2v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) | ||
| keephyp2v.5 | ⊢ 𝜓 | ||
| keephyp2v.6 | ⊢ 𝜏 | ||
| Assertion | keephyp2v | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | keephyp2v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | keephyp2v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | keephyp2v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) | |
| 4 | keephyp2v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) | |
| 5 | keephyp2v.5 | ⊢ 𝜓 | |
| 6 | keephyp2v.6 | ⊢ 𝜏 | |
| 7 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 ) | |
| 8 | 7 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 9 | 8 1 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
| 10 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 12 | 11 2 | syl | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 13 | 9 12 | bitrd | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
| 14 | 5 13 | mpbii | ⊢ ( 𝜑 → 𝜃 ) |
| 15 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 ) | |
| 16 | 15 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
| 17 | 16 3 | syl | ⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜂 ) ) |
| 18 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 ) | |
| 19 | 18 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
| 20 | 19 4 | syl | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜃 ) ) |
| 21 | 17 20 | bitrd | ⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
| 22 | 6 21 | mpbii | ⊢ ( ¬ 𝜑 → 𝜃 ) |
| 23 | 14 22 | pm2.61i | ⊢ 𝜃 |