This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgss2 | |- ( A C_ B -> S. A C _d x = S. B if ( x e. A , C , 0 ) _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( x e. A -> if ( x e. A , C , 0 ) = C ) |
|
| 2 | 1 | adantl | |- ( ( A C_ B /\ x e. A ) -> if ( x e. A , C , 0 ) = C ) |
| 3 | 2 | itgeq2dv | |- ( A C_ B -> S. A if ( x e. A , C , 0 ) _d x = S. A C _d x ) |
| 4 | id | |- ( A C_ B -> A C_ B ) |
|
| 5 | eldifn | |- ( x e. ( B \ A ) -> -. x e. A ) |
|
| 6 | 5 | iffalsed | |- ( x e. ( B \ A ) -> if ( x e. A , C , 0 ) = 0 ) |
| 7 | 6 | adantl | |- ( ( A C_ B /\ x e. ( B \ A ) ) -> if ( x e. A , C , 0 ) = 0 ) |
| 8 | 4 7 | itgss | |- ( A C_ B -> S. A if ( x e. A , C , 0 ) _d x = S. B if ( x e. A , C , 0 ) _d x ) |
| 9 | 3 8 | eqtr3d | |- ( A C_ B -> S. A C _d x = S. B if ( x e. A , C , 0 ) _d x ) |