This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istpsi.b | ⊢ ( Base ‘ 𝐾 ) = 𝐴 | |
| istpsi.j | ⊢ ( TopOpen ‘ 𝐾 ) = 𝐽 | ||
| istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 | ||
| istpsi.2 | ⊢ 𝐽 ∈ Top | ||
| Assertion | istpsi | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istpsi.b | ⊢ ( Base ‘ 𝐾 ) = 𝐴 | |
| 2 | istpsi.j | ⊢ ( TopOpen ‘ 𝐾 ) = 𝐽 | |
| 3 | istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 | |
| 4 | istpsi.2 | ⊢ 𝐽 ∈ Top | |
| 5 | 1 | eqcomi | ⊢ 𝐴 = ( Base ‘ 𝐾 ) |
| 6 | 2 | eqcomi | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) |
| 7 | 5 6 | istps2 | ⊢ ( 𝐾 ∈ TopSp ↔ ( 𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽 ) ) |
| 8 | 4 3 7 | mpbir2an | ⊢ 𝐾 ∈ TopSp |