This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eltpsi.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } | |
| Assertion | eltpsg | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltpsi.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } | |
| 2 | basendxlttsetndx | ⊢ ( Base ‘ ndx ) < ( TopSet ‘ ndx ) | |
| 3 | tsetndxnn | ⊢ ( TopSet ‘ ndx ) ∈ ℕ | |
| 4 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 5 | 1 2 3 4 | 2strop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopSet ‘ 𝐾 ) ) |
| 6 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ 𝐽 ) | |
| 7 | 1 2 3 | 2strbas | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( TopOn ‘ 𝐴 ) = ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 10 | 5 9 | eleq12d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ↔ ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 11 | 10 | ibi | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 13 | eqid | ⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) | |
| 14 | 12 13 | tsettps | ⊢ ( ( TopSet ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ TopSp ) |
| 15 | 11 14 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp ) |