This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A thin category is a category in which, given a pair of objects x and y and any two morphisms f , g from x to y , the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthinc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isthinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | isthinc3 | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthinc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isthinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | 1 2 | isthinc | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 4 | moel | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) | |
| 5 | 4 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) ) |