This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recl.1 | ⊢ 𝐴 ∈ ℂ | |
| readdi.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | ipcni | ⊢ ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | readdi.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | ipcnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |