This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| readdd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | ipcnd | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | readdd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | ipcnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |