This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.272 in WhiteheadRussell p. 193. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbcq | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜒 ↔ [ ( ℩ 𝑥 𝜓 ) / 𝑦 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 𝜓 ) ) | |
| 2 | 1 | sbceq1d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜒 ↔ [ ( ℩ 𝑥 𝜓 ) / 𝑦 ] 𝜒 ) ) |