This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasgrpf1.u | ⊢ 𝑈 = ( 𝐹 “s 𝑅 ) | |
| imasgrpf1.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | ||
| Assertion | imasgrpf1 | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝑈 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrpf1.u | ⊢ 𝑈 = ( 𝐹 “s 𝑅 ) | |
| 2 | imasgrpf1.v | ⊢ 𝑉 = ( Base ‘ 𝑅 ) | |
| 3 | 1 | a1i | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 4 | 2 | a1i | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 5 | eqidd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) | |
| 6 | f1f1orn | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝐵 → 𝐹 : 𝑉 –1-1-onto→ ran 𝐹 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝐹 : 𝑉 –1-1-onto→ ran 𝐹 ) |
| 8 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ran 𝐹 → 𝐹 : 𝑉 –onto→ ran 𝐹 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝐹 : 𝑉 –onto→ ran 𝐹 ) |
| 10 | 7 | f1ocpbl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 11 | simpr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝑅 ∈ Grp ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 13 | 3 4 5 9 10 11 12 | imasgrp | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ 𝑅 ∈ Grp ) → 𝑈 ∈ Grp ) |