This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifeq12da.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) | |
| ifeq12da.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐷 ) | ||
| Assertion | ifeq12da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq12da.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) | |
| 2 | ifeq12da.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐷 ) | |
| 3 | 1 | ifeq1da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
| 4 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐵 ) = 𝐶 ) | |
| 5 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐷 ) = 𝐶 ) | |
| 6 | 4 5 | eqtr4d | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
| 7 | 3 6 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
| 8 | 2 | ifeq2da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐷 ) ) |
| 9 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐷 ) = 𝐷 ) | |
| 10 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐶 , 𝐷 ) = 𝐷 ) | |
| 11 | 9 10 | eqtr4d | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐷 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
| 12 | 8 11 | sylan9eq | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
| 13 | 7 12 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |