This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifeq12da.1 | |- ( ( ph /\ ps ) -> A = C ) |
|
| ifeq12da.2 | |- ( ( ph /\ -. ps ) -> B = D ) |
||
| Assertion | ifeq12da | |- ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq12da.1 | |- ( ( ph /\ ps ) -> A = C ) |
|
| 2 | ifeq12da.2 | |- ( ( ph /\ -. ps ) -> B = D ) |
|
| 3 | 1 | ifeq1da | |- ( ph -> if ( ps , A , B ) = if ( ps , C , B ) ) |
| 4 | iftrue | |- ( ps -> if ( ps , C , B ) = C ) |
|
| 5 | iftrue | |- ( ps -> if ( ps , C , D ) = C ) |
|
| 6 | 4 5 | eqtr4d | |- ( ps -> if ( ps , C , B ) = if ( ps , C , D ) ) |
| 7 | 3 6 | sylan9eq | |- ( ( ph /\ ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) |
| 8 | 2 | ifeq2da | |- ( ph -> if ( ps , A , B ) = if ( ps , A , D ) ) |
| 9 | iffalse | |- ( -. ps -> if ( ps , A , D ) = D ) |
|
| 10 | iffalse | |- ( -. ps -> if ( ps , C , D ) = D ) |
|
| 11 | 9 10 | eqtr4d | |- ( -. ps -> if ( ps , A , D ) = if ( ps , C , D ) ) |
| 12 | 8 11 | sylan9eq | |- ( ( ph /\ -. ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) |
| 13 | 7 12 | pm2.61dan | |- ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |