This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iedgval | ⊢ ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ ( V × V ) ↔ 𝐺 ∈ ( V × V ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 2nd ‘ 𝑔 ) = ( 2nd ‘ 𝐺 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( .ef ‘ 𝑔 ) = ( .ef ‘ 𝐺 ) ) | |
| 4 | 1 2 3 | ifbieq12d | ⊢ ( 𝑔 = 𝐺 → if ( 𝑔 ∈ ( V × V ) , ( 2nd ‘ 𝑔 ) , ( .ef ‘ 𝑔 ) ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) ) |
| 5 | df-iedg | ⊢ iEdg = ( 𝑔 ∈ V ↦ if ( 𝑔 ∈ ( V × V ) , ( 2nd ‘ 𝑔 ) , ( .ef ‘ 𝑔 ) ) ) | |
| 6 | fvex | ⊢ ( 2nd ‘ 𝐺 ) ∈ V | |
| 7 | fvex | ⊢ ( .ef ‘ 𝐺 ) ∈ V | |
| 8 | 6 7 | ifex | ⊢ if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) ∈ V |
| 9 | 4 5 8 | fvmpt | ⊢ ( 𝐺 ∈ V → ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) ) |
| 10 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( .ef ‘ 𝐺 ) = ∅ ) | |
| 11 | prcnel | ⊢ ( ¬ 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) | |
| 12 | 11 | iffalsed | ⊢ ( ¬ 𝐺 ∈ V → if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) = ( .ef ‘ 𝐺 ) ) |
| 13 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 14 | 10 12 13 | 3eqtr4rd | ⊢ ( ¬ 𝐺 ∈ V → ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) ) |
| 15 | 9 14 | pm2.61i | ⊢ ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd ‘ 𝐺 ) , ( .ef ‘ 𝐺 ) ) |