This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubf | ⊢ −ℎ : ( ℋ × ℋ ) ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 2 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑦 ∈ ℋ → ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) |
| 4 | hvaddcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ) |
| 6 | 5 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ |
| 7 | df-hvsub | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
| 8 | 7 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ↔ −ℎ : ( ℋ × ℋ ) ⟶ ℋ ) |
| 9 | 6 8 | mpbi | ⊢ −ℎ : ( ℋ × ℋ ) ⟶ ℋ |