This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define vector subtraction. See hvsubvali for its value and hvsubcli for its closure. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hvsub | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmv | ⊢ −ℎ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | chba | ⊢ ℋ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cva | ⊢ +ℎ | |
| 6 | c1 | ⊢ 1 | |
| 7 | 6 | cneg | ⊢ - 1 |
| 8 | csm | ⊢ ·ℎ | |
| 9 | 3 | cv | ⊢ 𝑦 |
| 10 | 7 9 8 | co | ⊢ ( - 1 ·ℎ 𝑦 ) |
| 11 | 4 10 5 | co | ⊢ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) |
| 12 | 1 3 2 2 11 | cmpo | ⊢ ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 13 | 0 12 | wceq | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |