This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| hvass.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvass.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvsubassi | ⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | hvsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) |