This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 20-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzrevral3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) | |
| 2 | fzrevral | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ) ) | |
| 3 | 1 2 | mpd3an3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ) ) |
| 4 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 5 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 6 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) | |
| 7 | pncan2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑀 + 𝑁 ) − 𝑀 ) = 𝑁 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 9 | 4 5 8 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 10 | 9 | raleqdv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ( ( 𝑀 + 𝑁 ) − 𝑁 ) ... ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ) ) |
| 11 | 3 10 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝜑 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) [ ( ( 𝑀 + 𝑁 ) − 𝑘 ) / 𝑗 ] 𝜑 ) ) |