This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of fvmpt with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptd2f.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| fvmptd2f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| fvmptd2f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) ) | ||
| fvmptd3f.4 | ⊢ Ⅎ 𝑥 𝐹 | ||
| fvmptd3f.5 | ⊢ Ⅎ 𝑥 𝜓 | ||
| fvmptd3f.6 | ⊢ Ⅎ 𝑥 𝜑 | ||
| Assertion | fvmptd3f | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd2f.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 2 | fvmptd2f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | fvmptd2f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝜓 ) ) | |
| 4 | fvmptd3f.4 | ⊢ Ⅎ 𝑥 𝐹 | |
| 5 | fvmptd3f.5 | ⊢ Ⅎ 𝑥 𝜓 | |
| 6 | fvmptd3f.6 | ⊢ Ⅎ 𝑥 𝜑 | |
| 7 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 8 | 4 7 | nfeq | ⊢ Ⅎ 𝑥 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 9 | 8 5 | nfim | ⊢ Ⅎ 𝑥 ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) |
| 10 | 1 | elexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 11 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 13 | fveq1 | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) | |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 16 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐴 ∈ 𝐷 ) |
| 17 | 14 16 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝐷 ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 19 | 18 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 20 | 17 2 19 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 21 | 15 20 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐵 ) |
| 22 | 21 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) |
| 23 | 22 3 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) → 𝜓 ) ) |
| 24 | 13 23 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |
| 25 | 6 9 12 24 | exlimdd | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → 𝜓 ) ) |