This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| Assertion | funcestrcsetclem3 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 7 | 1 3 5 | estrcbasbas | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝑈 ) |
| 8 | 2 5 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑈 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑆 ) = 𝑈 ) |
| 11 | 7 10 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 | 11 4 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 | 6 12 | fmpt3d | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |