This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| fthf1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | ||
| fthf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fthf1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fthi.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| fthi.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | fthi | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑆 ) ↔ 𝑅 = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isfth.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isfth.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 4 | fthf1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | |
| 5 | fthf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | fthf1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | fthi.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 8 | fthi.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | 1 2 3 4 5 6 | fthf1 | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 10 | f1fveq | ⊢ ( ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑆 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑆 ) ↔ 𝑅 = 𝑆 ) ) | |
| 11 | 9 7 8 10 | syl12anc | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑆 ) ↔ 𝑅 = 𝑆 ) ) |