This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnrnov | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnfv | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) } ) | |
| 2 | fveq2 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | eqeq2d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = ( 𝑥 𝐹 𝑦 ) ) ) |
| 6 | 5 | rexxp | ⊢ ( ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) |
| 7 | 6 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹 ‘ 𝑤 ) } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } |
| 8 | 1 7 | eqtrdi | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ) |