This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | feldmfvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 3 | 2 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋 ∈ 𝐴 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 4 | df-nel | ⊢ ( ∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵 ) | |
| 5 | nelelne | ⊢ ( ¬ ∅ ∈ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) | |
| 6 | 4 5 | sylbi | ⊢ ( ∅ ∉ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) |
| 7 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 8 | fvfundmfvn0 | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) | |
| 9 | simprl | ⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋 ∈ dom 𝐹 ) | |
| 10 | simpl | ⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → dom 𝐹 = 𝐴 ) | |
| 11 | 9 10 | eleqtrd | ⊢ ( ( dom 𝐹 = 𝐴 ∧ ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) ) → 𝑋 ∈ 𝐴 ) |
| 12 | 11 | ex | ⊢ ( dom 𝐹 = 𝐴 → ( ( 𝑋 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝑋 } ) ) → 𝑋 ∈ 𝐴 ) ) |
| 13 | 7 8 12 | syl2im | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝐴 ) ) |
| 14 | 6 13 | sylan9r | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → 𝑋 ∈ 𝐴 ) ) |
| 15 | 3 14 | impbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝑋 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |