This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | feldmfvelcdm | |- ( ( F : A --> B /\ (/) e/ B ) -> ( X e. A <-> ( F ` X ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : A --> B /\ (/) e/ B ) -> F : A --> B ) |
|
| 2 | 1 | ffvelcdmda | |- ( ( ( F : A --> B /\ (/) e/ B ) /\ X e. A ) -> ( F ` X ) e. B ) |
| 3 | 2 | ex | |- ( ( F : A --> B /\ (/) e/ B ) -> ( X e. A -> ( F ` X ) e. B ) ) |
| 4 | df-nel | |- ( (/) e/ B <-> -. (/) e. B ) |
|
| 5 | nelelne | |- ( -. (/) e. B -> ( ( F ` X ) e. B -> ( F ` X ) =/= (/) ) ) |
|
| 6 | 4 5 | sylbi | |- ( (/) e/ B -> ( ( F ` X ) e. B -> ( F ` X ) =/= (/) ) ) |
| 7 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 8 | fvfundmfvn0 | |- ( ( F ` X ) =/= (/) -> ( X e. dom F /\ Fun ( F |` { X } ) ) ) |
|
| 9 | simprl | |- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> X e. dom F ) |
|
| 10 | simpl | |- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> dom F = A ) |
|
| 11 | 9 10 | eleqtrd | |- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> X e. A ) |
| 12 | 11 | ex | |- ( dom F = A -> ( ( X e. dom F /\ Fun ( F |` { X } ) ) -> X e. A ) ) |
| 13 | 7 8 12 | syl2im | |- ( F : A --> B -> ( ( F ` X ) =/= (/) -> X e. A ) ) |
| 14 | 6 13 | sylan9r | |- ( ( F : A --> B /\ (/) e/ B ) -> ( ( F ` X ) e. B -> X e. A ) ) |
| 15 | 3 14 | impbid | |- ( ( F : A --> B /\ (/) e/ B ) -> ( X e. A <-> ( F ` X ) e. B ) ) |