This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for f1cof1b and focofob . (Contributed by AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | ||
| fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | ||
| f1cof1blem.s | ⊢ ( 𝜑 → ran 𝐹 = 𝐶 ) | ||
| Assertion | f1cof1blem | ⊢ ( 𝜑 → ( ( 𝑃 = 𝐴 ∧ 𝐸 = 𝐶 ) ∧ ( 𝑋 = 𝐹 ∧ 𝑌 = 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 6 | fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | |
| 7 | f1cof1blem.s | ⊢ ( 𝜑 → ran 𝐹 = 𝐶 ) | |
| 8 | 7 | eqcomd | ⊢ ( 𝜑 → 𝐶 = ran 𝐹 ) |
| 9 | 8 | imaeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐶 ) = ( ◡ 𝐹 “ ran 𝐹 ) ) |
| 10 | 3 9 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ ran 𝐹 ) ) |
| 11 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 12 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 13 | 11 12 | eqtrid | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ran 𝐹 ) = 𝐴 ) |
| 14 | 10 13 | eqtrd | ⊢ ( 𝜑 → 𝑃 = 𝐴 ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ran 𝐹 = 𝐶 ) | |
| 16 | 15 | ineq1d | ⊢ ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ( ran 𝐹 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐶 ) ) |
| 17 | inidm | ⊢ ( 𝐶 ∩ 𝐶 ) = 𝐶 | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝜑 ∧ ran 𝐹 = 𝐶 ) → ( ran 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 19 | 7 18 | mpdan | ⊢ ( 𝜑 → ( ran 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 20 | 2 19 | eqtrid | ⊢ ( 𝜑 → 𝐸 = 𝐶 ) |
| 21 | 14 20 | jca | ⊢ ( 𝜑 → ( 𝑃 = 𝐴 ∧ 𝐸 = 𝐶 ) ) |
| 22 | 10 11 | eqtrdi | ⊢ ( 𝜑 → 𝑃 = dom 𝐹 ) |
| 23 | 22 | reseq2d | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑃 ) = ( 𝐹 ↾ dom 𝐹 ) ) |
| 24 | 4 23 | eqtrid | ⊢ ( 𝜑 → 𝑋 = ( 𝐹 ↾ dom 𝐹 ) ) |
| 25 | 1 | freld | ⊢ ( 𝜑 → Rel 𝐹 ) |
| 26 | resdm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 28 | 24 27 | eqtrd | ⊢ ( 𝜑 → 𝑋 = 𝐹 ) |
| 29 | 5 | fdmd | ⊢ ( 𝜑 → dom 𝐺 = 𝐶 ) |
| 30 | 20 29 | eqtr4d | ⊢ ( 𝜑 → 𝐸 = dom 𝐺 ) |
| 31 | 30 | reseq2d | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) = ( 𝐺 ↾ dom 𝐺 ) ) |
| 32 | 6 31 | eqtrid | ⊢ ( 𝜑 → 𝑌 = ( 𝐺 ↾ dom 𝐺 ) ) |
| 33 | 5 | freld | ⊢ ( 𝜑 → Rel 𝐺 ) |
| 34 | resdm | ⊢ ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) | |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
| 36 | 32 35 | eqtrd | ⊢ ( 𝜑 → 𝑌 = 𝐺 ) |
| 37 | 21 28 36 | jca32 | ⊢ ( 𝜑 → ( ( 𝑃 = 𝐴 ∧ 𝐸 = 𝐶 ) ∧ ( 𝑋 = 𝐹 ∧ 𝑌 = 𝐺 ) ) ) |