This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exanres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) | |
| 2 | brres | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝐶 ) ) ) ) |
| 4 | anandi | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝐵 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) ) |
| 6 | 5 | exbidv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) ) |
| 7 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |