This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exanres | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u e. A ( u R B /\ u S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres | |- ( B e. V -> ( u ( R |` A ) B <-> ( u e. A /\ u R B ) ) ) |
|
| 2 | brres | |- ( C e. W -> ( u ( S |` A ) C <-> ( u e. A /\ u S C ) ) ) |
|
| 3 | 1 2 | bi2anan9 | |- ( ( B e. V /\ C e. W ) -> ( ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> ( ( u e. A /\ u R B ) /\ ( u e. A /\ u S C ) ) ) ) |
| 4 | anandi | |- ( ( u e. A /\ ( u R B /\ u S C ) ) <-> ( ( u e. A /\ u R B ) /\ ( u e. A /\ u S C ) ) ) |
|
| 5 | 3 4 | bitr4di | |- ( ( B e. V /\ C e. W ) -> ( ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> ( u e. A /\ ( u R B /\ u S C ) ) ) ) |
| 6 | 5 | exbidv | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u ( u e. A /\ ( u R B /\ u S C ) ) ) ) |
| 7 | df-rex | |- ( E. u e. A ( u R B /\ u S C ) <-> E. u ( u e. A /\ ( u R B /\ u S C ) ) ) |
|
| 8 | 6 7 | bitr4di | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u e. A ( u R B /\ u S C ) ) ) |