This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqvreltr.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| Assertion | eqvreltr | ⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreltr.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| 2 | eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 4 | simpr | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐵 𝑅 𝐶 ) | |
| 5 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐶 ) → 𝐵 ∈ V ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐵 ∈ V ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) | |
| 8 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 9 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 10 | 8 9 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐶 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 11 | 6 7 10 | spcedv | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐶 ) ) |
| 12 | simpl | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐵 ) | |
| 13 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ V ) | |
| 14 | 3 12 13 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐴 ∈ V ) |
| 15 | brrelex2 | ⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐶 ) → 𝐶 ∈ V ) | |
| 16 | 3 4 15 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐶 ∈ V ) |
| 17 | brcog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ( 𝑅 ∘ 𝑅 ) 𝐶 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐶 ) ) ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → ( 𝐴 ( 𝑅 ∘ 𝑅 ) 𝐶 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐶 ) ) ) |
| 19 | 11 18 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐴 ( 𝑅 ∘ 𝑅 ) 𝐶 ) |
| 20 | 19 | ex | ⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 ( 𝑅 ∘ 𝑅 ) 𝐶 ) ) |
| 21 | dfeqvrel2 | ⊢ ( EqvRel 𝑅 ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) | |
| 22 | 21 | simplbi | ⊢ ( EqvRel 𝑅 → ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
| 23 | 22 | simp3d | ⊢ ( EqvRel 𝑅 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 24 | 1 23 | syl | ⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 25 | 24 | ssbrd | ⊢ ( 𝜑 → ( 𝐴 ( 𝑅 ∘ 𝑅 ) 𝐶 → 𝐴 𝑅 𝐶 ) ) |
| 26 | 20 25 | syld | ⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |