This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvrelref.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| eqvrelref.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) | ||
| Assertion | eqvrelref | ⊢ ( 𝜑 → 𝐴 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelref.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| 2 | eqvrelref.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) | |
| 3 | eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) | |
| 4 | releldmb | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | |
| 5 | 1 3 4 | 3syl | ⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |
| 6 | 2 5 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 𝐴 𝑅 𝑥 ) |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → EqvRel 𝑅 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝑥 ) | |
| 9 | 7 8 8 | eqvreltr4d | ⊢ ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 𝑅 𝐴 ) |
| 10 | 6 9 | exlimddv | ⊢ ( 𝜑 → 𝐴 𝑅 𝐴 ) |