This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldisj2 | ⊢ ( EqvRel 𝑅 → ElDisj ( 𝐴 / 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj1 | ⊢ ( EqvRel 𝑅 → ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 2 | dfeldisj5 | ⊢ ( ElDisj ( 𝐴 / 𝑅 ) ↔ ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( EqvRel 𝑅 → ElDisj ( 𝐴 / 𝑅 ) ) |