This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of a class variable and a class abstraction (deduction form of eqabb ). (Contributed by NM, 16-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabrd.1 | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) | |
| Assertion | eqabrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabrd.1 | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 3 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜓 ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) |