This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For an element A of an unordered pair which is a subset of a given set V , there is another (maybe the same) element b of the given set V being an element of the unordered pair. (Contributed by AV, 5-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpr2elpr | |- ( ( X e. V /\ Y e. V /\ A e. { X , Y } ) -> E. b e. V { X , Y } = { A , b } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( A = X /\ ( X e. V /\ Y e. V ) ) -> Y e. V ) |
|
| 2 | preq12 | |- ( ( A = X /\ b = Y ) -> { A , b } = { X , Y } ) |
|
| 3 | 2 | eqcomd | |- ( ( A = X /\ b = Y ) -> { X , Y } = { A , b } ) |
| 4 | 3 | adantlr | |- ( ( ( A = X /\ ( X e. V /\ Y e. V ) ) /\ b = Y ) -> { X , Y } = { A , b } ) |
| 5 | 1 4 | rspcedeq2vd | |- ( ( A = X /\ ( X e. V /\ Y e. V ) ) -> E. b e. V { X , Y } = { A , b } ) |
| 6 | 5 | ex | |- ( A = X -> ( ( X e. V /\ Y e. V ) -> E. b e. V { X , Y } = { A , b } ) ) |
| 7 | simprl | |- ( ( A = Y /\ ( X e. V /\ Y e. V ) ) -> X e. V ) |
|
| 8 | preq12 | |- ( ( A = Y /\ b = X ) -> { A , b } = { Y , X } ) |
|
| 9 | prcom | |- { Y , X } = { X , Y } |
|
| 10 | 8 9 | eqtr2di | |- ( ( A = Y /\ b = X ) -> { X , Y } = { A , b } ) |
| 11 | 10 | adantlr | |- ( ( ( A = Y /\ ( X e. V /\ Y e. V ) ) /\ b = X ) -> { X , Y } = { A , b } ) |
| 12 | 7 11 | rspcedeq2vd | |- ( ( A = Y /\ ( X e. V /\ Y e. V ) ) -> E. b e. V { X , Y } = { A , b } ) |
| 13 | 12 | ex | |- ( A = Y -> ( ( X e. V /\ Y e. V ) -> E. b e. V { X , Y } = { A , b } ) ) |
| 14 | 6 13 | jaoi | |- ( ( A = X \/ A = Y ) -> ( ( X e. V /\ Y e. V ) -> E. b e. V { X , Y } = { A , b } ) ) |
| 15 | elpri | |- ( A e. { X , Y } -> ( A = X \/ A = Y ) ) |
|
| 16 | 14 15 | syl11 | |- ( ( X e. V /\ Y e. V ) -> ( A e. { X , Y } -> E. b e. V { X , Y } = { A , b } ) ) |
| 17 | 16 | 3impia | |- ( ( X e. V /\ Y e. V /\ A e. { X , Y } ) -> E. b e. V { X , Y } = { A , b } ) |