This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinisegg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐶 𝐴 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐵 ◡ 𝐴 𝐶 ) ) | |
| 2 | brcnvg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ◡ 𝐴 𝐶 ↔ 𝐶 𝐴 𝐵 ) ) | |
| 3 | 1 2 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐶 𝐴 𝐵 ) ) |