This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimhyp4v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑 ↔ 𝜒 ) ) | |
| elimhyp4v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| elimhyp4v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃 ↔ 𝜏 ) ) | ||
| elimhyp4v.4 | ⊢ ( 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜏 ↔ 𝜓 ) ) | ||
| elimhyp4v.5 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂 ↔ 𝜁 ) ) | ||
| elimhyp4v.6 | ⊢ ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁 ↔ 𝜎 ) ) | ||
| elimhyp4v.7 | ⊢ ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎 ↔ 𝜌 ) ) | ||
| elimhyp4v.8 | ⊢ ( 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜌 ↔ 𝜓 ) ) | ||
| elimhyp4v.9 | ⊢ 𝜂 | ||
| Assertion | elimhyp4v | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyp4v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | elimhyp4v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | elimhyp4v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | elimhyp4v.4 | ⊢ ( 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜏 ↔ 𝜓 ) ) | |
| 5 | elimhyp4v.5 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂 ↔ 𝜁 ) ) | |
| 6 | elimhyp4v.6 | ⊢ ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁 ↔ 𝜎 ) ) | |
| 7 | elimhyp4v.7 | ⊢ ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎 ↔ 𝜌 ) ) | |
| 8 | elimhyp4v.8 | ⊢ ( 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) → ( 𝜌 ↔ 𝜓 ) ) | |
| 9 | elimhyp4v.9 | ⊢ 𝜂 | |
| 10 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
| 12 | 11 1 | syl | ⊢ ( 𝜑 → ( 𝜑 ↔ 𝜒 ) ) |
| 13 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 ) | |
| 14 | 13 | eqcomd | ⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
| 15 | 14 2 | syl | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 16 | 12 15 | bitrd | ⊢ ( 𝜑 → ( 𝜑 ↔ 𝜃 ) ) |
| 17 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 ) | |
| 18 | 17 | eqcomd | ⊢ ( 𝜑 → 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
| 19 | 18 3 | syl | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
| 20 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐹 ) | |
| 21 | 20 | eqcomd | ⊢ ( 𝜑 → 𝐹 = if ( 𝜑 , 𝐹 , 𝐺 ) ) |
| 22 | 21 4 | syl | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜓 ) ) |
| 23 | 16 19 22 | 3bitrd | ⊢ ( 𝜑 → ( 𝜑 ↔ 𝜓 ) ) |
| 24 | 23 | ibi | ⊢ ( 𝜑 → 𝜓 ) |
| 25 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 ) | |
| 26 | 25 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
| 27 | 26 5 | syl | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜁 ) ) |
| 28 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 ) | |
| 29 | 28 | eqcomd | ⊢ ( ¬ 𝜑 → 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
| 30 | 29 6 | syl | ⊢ ( ¬ 𝜑 → ( 𝜁 ↔ 𝜎 ) ) |
| 31 | 27 30 | bitrd | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜎 ) ) |
| 32 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 ) | |
| 33 | 32 | eqcomd | ⊢ ( ¬ 𝜑 → 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
| 34 | 33 7 | syl | ⊢ ( ¬ 𝜑 → ( 𝜎 ↔ 𝜌 ) ) |
| 35 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐺 ) | |
| 36 | 35 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐺 = if ( 𝜑 , 𝐹 , 𝐺 ) ) |
| 37 | 36 8 | syl | ⊢ ( ¬ 𝜑 → ( 𝜌 ↔ 𝜓 ) ) |
| 38 | 31 34 37 | 3bitrd | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜓 ) ) |
| 39 | 9 38 | mpbii | ⊢ ( ¬ 𝜑 → 𝜓 ) |
| 40 | 24 39 | pm2.61i | ⊢ 𝜓 |