This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimhyp4v.1 | |- ( A = if ( ph , A , D ) -> ( ph <-> ch ) ) |
|
| elimhyp4v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
||
| elimhyp4v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
||
| elimhyp4v.4 | |- ( F = if ( ph , F , G ) -> ( ta <-> ps ) ) |
||
| elimhyp4v.5 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
||
| elimhyp4v.6 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
||
| elimhyp4v.7 | |- ( S = if ( ph , C , S ) -> ( si <-> rh ) ) |
||
| elimhyp4v.8 | |- ( G = if ( ph , F , G ) -> ( rh <-> ps ) ) |
||
| elimhyp4v.9 | |- et |
||
| Assertion | elimhyp4v | |- ps |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyp4v.1 | |- ( A = if ( ph , A , D ) -> ( ph <-> ch ) ) |
|
| 2 | elimhyp4v.2 | |- ( B = if ( ph , B , R ) -> ( ch <-> th ) ) |
|
| 3 | elimhyp4v.3 | |- ( C = if ( ph , C , S ) -> ( th <-> ta ) ) |
|
| 4 | elimhyp4v.4 | |- ( F = if ( ph , F , G ) -> ( ta <-> ps ) ) |
|
| 5 | elimhyp4v.5 | |- ( D = if ( ph , A , D ) -> ( et <-> ze ) ) |
|
| 6 | elimhyp4v.6 | |- ( R = if ( ph , B , R ) -> ( ze <-> si ) ) |
|
| 7 | elimhyp4v.7 | |- ( S = if ( ph , C , S ) -> ( si <-> rh ) ) |
|
| 8 | elimhyp4v.8 | |- ( G = if ( ph , F , G ) -> ( rh <-> ps ) ) |
|
| 9 | elimhyp4v.9 | |- et |
|
| 10 | iftrue | |- ( ph -> if ( ph , A , D ) = A ) |
|
| 11 | 10 | eqcomd | |- ( ph -> A = if ( ph , A , D ) ) |
| 12 | 11 1 | syl | |- ( ph -> ( ph <-> ch ) ) |
| 13 | iftrue | |- ( ph -> if ( ph , B , R ) = B ) |
|
| 14 | 13 | eqcomd | |- ( ph -> B = if ( ph , B , R ) ) |
| 15 | 14 2 | syl | |- ( ph -> ( ch <-> th ) ) |
| 16 | 12 15 | bitrd | |- ( ph -> ( ph <-> th ) ) |
| 17 | iftrue | |- ( ph -> if ( ph , C , S ) = C ) |
|
| 18 | 17 | eqcomd | |- ( ph -> C = if ( ph , C , S ) ) |
| 19 | 18 3 | syl | |- ( ph -> ( th <-> ta ) ) |
| 20 | iftrue | |- ( ph -> if ( ph , F , G ) = F ) |
|
| 21 | 20 | eqcomd | |- ( ph -> F = if ( ph , F , G ) ) |
| 22 | 21 4 | syl | |- ( ph -> ( ta <-> ps ) ) |
| 23 | 16 19 22 | 3bitrd | |- ( ph -> ( ph <-> ps ) ) |
| 24 | 23 | ibi | |- ( ph -> ps ) |
| 25 | iffalse | |- ( -. ph -> if ( ph , A , D ) = D ) |
|
| 26 | 25 | eqcomd | |- ( -. ph -> D = if ( ph , A , D ) ) |
| 27 | 26 5 | syl | |- ( -. ph -> ( et <-> ze ) ) |
| 28 | iffalse | |- ( -. ph -> if ( ph , B , R ) = R ) |
|
| 29 | 28 | eqcomd | |- ( -. ph -> R = if ( ph , B , R ) ) |
| 30 | 29 6 | syl | |- ( -. ph -> ( ze <-> si ) ) |
| 31 | 27 30 | bitrd | |- ( -. ph -> ( et <-> si ) ) |
| 32 | iffalse | |- ( -. ph -> if ( ph , C , S ) = S ) |
|
| 33 | 32 | eqcomd | |- ( -. ph -> S = if ( ph , C , S ) ) |
| 34 | 33 7 | syl | |- ( -. ph -> ( si <-> rh ) ) |
| 35 | iffalse | |- ( -. ph -> if ( ph , F , G ) = G ) |
|
| 36 | 35 | eqcomd | |- ( -. ph -> G = if ( ph , F , G ) ) |
| 37 | 36 8 | syl | |- ( -. ph -> ( rh <-> ps ) ) |
| 38 | 31 34 37 | 3bitrd | |- ( -. ph -> ( et <-> ps ) ) |
| 39 | 9 38 | mpbii | |- ( -. ph -> ps ) |
| 40 | 24 39 | pm2.61i | |- ps |