This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzolem1 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ≤ ( 𝑁 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) | |
| 2 | elfzoel2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) | |
| 4 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 6 | 3 5 | eleqtrd | ⊢ ( ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 7 | elfzle2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝐾 ≤ ( 𝑁 − 1 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑁 ∈ ℤ ) → 𝐾 ≤ ( 𝑁 − 1 ) ) |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ≤ ( 𝑁 − 1 ) ) |