This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldifeldifsn | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝑋 ∈ 𝐴 → { 𝑋 } ⊆ 𝐴 ) | |
| 2 | 1 | sscond | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐵 ∖ 𝐴 ) ⊆ ( 𝐵 ∖ { 𝑋 } ) ) |
| 3 | 2 | sselda | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝐵 ∖ { 𝑋 } ) ) |