This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel0TT.1 | ⊢ 𝜑 | |
| eel0TT.2 | ⊢ ( ⊤ → 𝜓 ) | ||
| eel0TT.3 | ⊢ ( ⊤ → 𝜒 ) | ||
| eel0TT.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | eel0TT | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel0TT.1 | ⊢ 𝜑 | |
| 2 | eel0TT.2 | ⊢ ( ⊤ → 𝜓 ) | |
| 3 | eel0TT.3 | ⊢ ( ⊤ → 𝜒 ) | |
| 4 | eel0TT.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 5 | truan | ⊢ ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 ) | |
| 6 | 1 4 | mp3an1 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 7 | 2 6 | sylan | ⊢ ( ( ⊤ ∧ 𝜒 ) → 𝜃 ) |
| 8 | 5 7 | sylbir | ⊢ ( 𝜒 → 𝜃 ) |
| 9 | 3 8 | syl | ⊢ ( ⊤ → 𝜃 ) |
| 10 | 9 | mptru | ⊢ 𝜃 |