This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a simple graph is a proper unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edgssv2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| edgssv2.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | edgssv2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ 𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgssv2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | edgssv2.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | edgusgr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) | |
| 5 | 3 4 | sylan2b | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 6 | elpwi | ⊢ ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 7 | 6 | anim1i | ⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 9 | 1 | a1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → 𝑉 = ( Vtx ‘ 𝐺 ) ) |
| 10 | 9 | sseq2d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ 𝑉 ↔ 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 11 | 10 | anbi1d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐶 ⊆ 𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ↔ ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ 𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |