This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a simple graph is a proper unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edgssv2.v | |- V = ( Vtx ` G ) |
|
| edgssv2.e | |- E = ( Edg ` G ) |
||
| Assertion | edgssv2 | |- ( ( G e. USGraph /\ C e. E ) -> ( C C_ V /\ ( # ` C ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgssv2.v | |- V = ( Vtx ` G ) |
|
| 2 | edgssv2.e | |- E = ( Edg ` G ) |
|
| 3 | 2 | eleq2i | |- ( C e. E <-> C e. ( Edg ` G ) ) |
| 4 | edgusgr | |- ( ( G e. USGraph /\ C e. ( Edg ` G ) ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
|
| 5 | 3 4 | sylan2b | |- ( ( G e. USGraph /\ C e. E ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 6 | elpwi | |- ( C e. ~P ( Vtx ` G ) -> C C_ ( Vtx ` G ) ) |
|
| 7 | 6 | anim1i | |- ( ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) -> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 8 | 5 7 | syl | |- ( ( G e. USGraph /\ C e. E ) -> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 9 | 1 | a1i | |- ( ( G e. USGraph /\ C e. E ) -> V = ( Vtx ` G ) ) |
| 10 | 9 | sseq2d | |- ( ( G e. USGraph /\ C e. E ) -> ( C C_ V <-> C C_ ( Vtx ` G ) ) ) |
| 11 | 10 | anbi1d | |- ( ( G e. USGraph /\ C e. E ) -> ( ( C C_ V /\ ( # ` C ) = 2 ) <-> ( C C_ ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) ) |
| 12 | 8 11 | mpbird | |- ( ( G e. USGraph /\ C e. E ) -> ( C C_ V /\ ( # ` C ) = 2 ) ) |