This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of e03 . (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e03an.1 | ⊢ 𝜑 | |
| e03an.2 | ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) | ||
| e03an.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | e03an | ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e03an.1 | ⊢ 𝜑 | |
| 2 | e03an.2 | ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜏 ) | |
| 3 | e03an.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 3 | ex | ⊢ ( 𝜑 → ( 𝜏 → 𝜂 ) ) |
| 5 | 1 2 4 | e03 | ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜂 ) |