This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ee03an.1 | ⊢ 𝜑 | |
| ee03an.2 | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) | ||
| ee03an.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | ee03an | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee03an.1 | ⊢ 𝜑 | |
| 2 | ee03an.2 | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) | |
| 3 | ee03an.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 3 | ex | ⊢ ( 𝜑 → ( 𝜏 → 𝜂 ) ) |
| 5 | 1 2 4 | ee03 | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |