This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. (Eliminates a hypothesis of divcan3i with the weak deduction theorem.) (Contributed by NM, 3-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | divcan3zi | ⊢ ( 𝐵 ≠ 0 → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵 ≠ 0 → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) |