This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap denominators in a division. (Contributed by NM, 15-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
| divmul.4 | ⊢ 𝐵 ≠ 0 | ||
| divdiv23.5 | ⊢ 𝐶 ≠ 0 | ||
| Assertion | divdiv32i | ⊢ ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) / 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | divmul.4 | ⊢ 𝐵 ≠ 0 | |
| 5 | divdiv23.5 | ⊢ 𝐶 ≠ 0 | |
| 6 | 1 2 3 | divdiv23zi | ⊢ ( ( 𝐵 ≠ 0 ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) / 𝐵 ) ) |
| 7 | 4 5 6 | mp2an | ⊢ ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) / 𝐵 ) |