This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difrab0eq | ⊢ ( ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) = ∅ ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | ⊢ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) = ∅ ) | |
| 2 | ssrabeq | ⊢ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) | |
| 3 | 1 2 | bitr3i | ⊢ ( ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) = ∅ ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) |