This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrabeq | ⊢ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ 𝑉 | |
| 2 | 1 | biantru | ⊢ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ∧ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ 𝑉 ) ) |
| 3 | eqss | ⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ∧ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ⊆ 𝑉 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( 𝑉 ⊆ { 𝑥 ∈ 𝑉 ∣ 𝜑 } ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ 𝜑 } ) |