This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfin3 | |- ( A i^i B ) = ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ddif | |- ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) = ( A \ ( _V \ B ) ) |
|
| 2 | dfun2 | |- ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) |
|
| 3 | ddif | |- ( _V \ ( _V \ A ) ) = A |
|
| 4 | 3 | difeq1i | |- ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) = ( A \ ( _V \ B ) ) |
| 5 | 4 | difeq2i | |- ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) = ( _V \ ( A \ ( _V \ B ) ) ) |
| 6 | 2 5 | eqtri | |- ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( A \ ( _V \ B ) ) ) |
| 7 | 6 | difeq2i | |- ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) = ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) |
| 8 | dfin2 | |- ( A i^i B ) = ( A \ ( _V \ B ) ) |
|
| 9 | 1 7 8 | 3eqtr4ri | |- ( A i^i B ) = ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) |