This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of functions. For the X axis and the Y axis you can convert the right side to { f e. Rels | A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) } . (Contributed by Peter Mazsa, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffunsALTV3 | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels3 | ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑓 ∈ Rels ) ) | |
| 3 | cosselrels | ⊢ ( 𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud | ⊢ ( 𝑓 ∈ Rels → ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑓 ∈ Rels ) ) ) |
| 5 | 2 4 | bitr4id | ⊢ ( 𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 6 | 1 5 | rabimbieq | ⊢ FunsALTV = { 𝑓 ∈ Rels ∣ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑓 𝑥 ∧ 𝑢 𝑓 𝑦 ) → 𝑥 = 𝑦 ) } |