This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of functions. For the X axis and the Y axis you can convert the right side to { f e. Rels | A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) } . (Contributed by Peter Mazsa, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffunsALTV3 | |- FunsALTV = { f e. Rels | A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV | |- FunsALTV = { f e. Rels | ,~ f e. CnvRefRels } |
|
| 2 | cosselcnvrefrels3 | |- ( ,~ f e. CnvRefRels <-> ( A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) /\ ,~ f e. Rels ) ) |
|
| 3 | cosselrels | |- ( f e. Rels -> ,~ f e. Rels ) |
|
| 4 | 3 | biantrud | |- ( f e. Rels -> ( A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) <-> ( A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) /\ ,~ f e. Rels ) ) ) |
| 5 | 2 4 | bitr4id | |- ( f e. Rels -> ( ,~ f e. CnvRefRels <-> A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) ) ) |
| 6 | 1 5 | rabimbieq | |- FunsALTV = { f e. Rels | A. u A. x A. y ( ( u f x /\ u f y ) -> x = y ) } |