This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfblockliftmap2 | ⊢ ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-blockliftmap | ⊢ ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) | |
| 2 | elinel1 | ⊢ ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) → 𝑚 ∈ 𝐴 ) | |
| 3 | dmxrncnvepres2 | ⊢ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) | |
| 4 | 2 3 | eleq2s | ⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → 𝑚 ∈ 𝐴 ) |
| 5 | xrnres2 | ⊢ ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) | |
| 6 | 5 | eceq2i | ⊢ [ 𝑚 ] ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) |
| 7 | elecreseq | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) | |
| 8 | 6 7 | eqtr3id | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) |
| 9 | ecxrncnvep2 | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) | |
| 10 | 8 9 | eqtrd | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 12 | 11 | mpteq2ia | ⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 13 | 3 | mpteq1i | ⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 14 | 1 12 13 | 3eqtri | ⊢ ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |