This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfblockliftmap2 | |- ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-blockliftmap | |- ( R BlockLiftMap A ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) |
|
| 2 | elinel1 | |- ( m e. ( A i^i ( dom R \ { (/) } ) ) -> m e. A ) |
|
| 3 | dmxrncnvepres2 | |- dom ( R |X. ( `' _E |` A ) ) = ( A i^i ( dom R \ { (/) } ) ) |
|
| 4 | 2 3 | eleq2s | |- ( m e. dom ( R |X. ( `' _E |` A ) ) -> m e. A ) |
| 5 | xrnres2 | |- ( ( R |X. `' _E ) |` A ) = ( R |X. ( `' _E |` A ) ) |
|
| 6 | 5 | eceq2i | |- [ m ] ( ( R |X. `' _E ) |` A ) = [ m ] ( R |X. ( `' _E |` A ) ) |
| 7 | elecreseq | |- ( m e. A -> [ m ] ( ( R |X. `' _E ) |` A ) = [ m ] ( R |X. `' _E ) ) |
|
| 8 | 6 7 | eqtr3id | |- ( m e. A -> [ m ] ( R |X. ( `' _E |` A ) ) = [ m ] ( R |X. `' _E ) ) |
| 9 | ecxrncnvep2 | |- ( m e. A -> [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) ) |
|
| 10 | 8 9 | eqtrd | |- ( m e. A -> [ m ] ( R |X. ( `' _E |` A ) ) = ( [ m ] R X. m ) ) |
| 11 | 4 10 | syl | |- ( m e. dom ( R |X. ( `' _E |` A ) ) -> [ m ] ( R |X. ( `' _E |` A ) ) = ( [ m ] R X. m ) ) |
| 12 | 11 | mpteq2ia | |- ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> ( [ m ] R X. m ) ) |
| 13 | 3 | mpteq1i | |- ( m e. dom ( R |X. ( `' _E |` A ) ) |-> ( [ m ] R X. m ) ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) |
| 14 | 1 12 13 | 3eqtri | |- ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) |